Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Chinese Journal of Natural Medicines (English Ed.) ; (6): 753-759, 2014.
Article in English | WPRIM | ID: wpr-812204

ABSTRACT

Perilla frutescens (Perilla leaf), a garnishing vegetable in East Asian countries, as well as a plant-based medicine, has been used for centuries to treat various conditions, including depression. Several studies have demonstrated that the essential oil of P. frutescens (EOPF) attenuated the depressive-like behavior in mice. The present study was designed to test the anti-depressant effects of EOPF and the possible mechanisms in an chronic, unpredictable, mild stress (CUMS)-induced mouse model. With the exposure to stressor once daily for five consecutive weeks, EOPF (3, 6, and 9 mg·kg(-1)) and a positive control drug fluoxetine (20 mg·kg(-1)) were administered through gastric intubation to mice once daily for three consecutive weeks from the 3(rd) week. Open-field test, sucrose consumption test, tail suspension test (TST), and forced swimming test (FST) were used to evaluate the behavioral activity. The contents of 5-hydroxytryptamine (5-HT) and its metabolite, 5-hydroxyindoleacetic acid (5-HIAA), in mouse hippocampus were determined by HPLC-ECD. Serum interleukin (IL)-1, IL-6, and tumor necrosis factor (TNF)-α levels were evaluated by enzyme-linked immunosorbent assay (ELISA). The results showed that CUMS significantly decreased the levels of 5-HT and 5-HIAA in the hippocampus, with an increase in plasma IL-6, IL-1β, and TNF-α levels. CUMS also reduced open-field activity, sucrose consumption, as well as increased immobility duration in FST and TST. EOPF administration could effectively reverse the alterations in the concentrations of 5-HT and 5-HIAA; reduce the IL-6, IL-1β, and TNF-α levels. Moreover, EOPF could effectively reverse alterations in immobility duration, sucrose consumption, and open-field activity. However, the effect was not dose-dependent. In conclusion, EOPF administration exhibited significant antidepressant-like effects in mice with CUMS-induced depression. The antidepressant activity of EOPF might be related to the relation between alteration of serotonergic responses and anti-inflammatory effects.


Subject(s)
Animals , Humans , Male , Mice , Antidepressive Agents , Behavior, Animal , Chronic Disease , Therapeutics , Cytokines , Blood , Depression , Blood , Drug Therapy , Psychology , Disease Models, Animal , Mice, Inbred ICR , Oils, Volatile , Perilla frutescens , Chemistry , Plant Oils , Stress, Physiological
2.
Chinese Journal of Natural Medicines (English Ed.) ; (6): 920-928, 2014.
Article in English | WPRIM | ID: wpr-812184

ABSTRACT

Qifu-Yin (QFY), a widely used formula of traditional Chinese medicine (TCM) derived from "Jingyue Quanshu", is one of the most commonly used TCM prescriptions for the clinical treatment of Alzheimer disease. The role of advanced glycation end products (AGEs) and its receptor RAGE have attracted increasing attention as the pivotal role of Aβ has been questioned. The present study was designed to test the neuroprotective effects of QFY, and the possible mechanism in AGE-induced Alzheimer model rats. After injection of AGE in the CA3 area of the hippocampus, QFY (8.6, 4.3, and 2.15 g·kg(-1)), and a positive control drug donepezil (2 mg·kg(-1)) were administrated through gastric intubation to rats once daily for thirty consecutive days. Another positive control group was the AGE + anti-RAGE group, which was simultaneously injected with anti-RAGE antibody before AGE treatment. The control group, sham-operated group, as well as the AGE + anti-RAGE group received saline at the same dosage. The Morris water maze test and the step-down passive avoidance test were conducted to evaluate the cognitive function of the rats. The expression of RAGE and NF-κB were assayed by immunohistochemical staining. The levels of Aβ, TNF-α, and IL-1β in the hippocampus were measured by enzyme-linked immunosorbent assay (ELISA). The results showed that QFY could significantly attenuate the memory impairment induced by AGE, decrease the expressions of RAGE and NF-κB, and reduce the levels of Aβ, TNF-α, and IL-1β in the hippocampus in a dose-dependent manner. Also, the blockage of RAGE could significantly reduce the impairments caused by AGEs. In conclusion, QFY could attenuate AGEs-induced, Alzheimer-like pathophysiological changes. These neuroprotective effects might be related to the RAGE/NF-κB pathway and its anti-inflammatory activity.


Subject(s)
Animals , Male , Alzheimer Disease , Drug Therapy , Metabolism , Amyloid beta-Peptides , Metabolism , Anti-Inflammatory Agents , Pharmacology , Therapeutic Uses , Brain , Metabolism , Dose-Response Relationship, Drug , Drugs, Chinese Herbal , Pharmacology , Therapeutic Uses , Glycation End Products, Advanced , Interleukin-1beta , Metabolism , Learning , Magnoliopsida , Memory Disorders , Drug Therapy , Metabolism , NF-kappa B , Metabolism , Phytotherapy , Plants, Medicinal , Rats, Sprague-Dawley , Receptor for Advanced Glycation End Products , Receptors, Immunologic , Metabolism , Signal Transduction , Tumor Necrosis Factor-alpha , Metabolism
SELECTION OF CITATIONS
SEARCH DETAIL